Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Article in English | MEDLINE | ID: mdl-38577727

ABSTRACT

BACKGROUND: The cerebellum is a key structure involved in balance and motor control, and has become a new stimulation target in brain regulation technology. Interference theta-burst simulation (iTBS) is a novel simulation mode of repetitive transcranial magnetic simulation. However, the impact of cerebellar iTBS on balance function and gait in stroke patients is still unknown. AIM: The aim of this study was to determine whether cerebellar iTBS can improve function, particularly balance and gait, in patients with post-stroke hemiplegia. DESIGN: This study is a randomized, double-blind, sham controlled clinical trial. SETTING: The study was carried out at the Department of Rehabilitation Medicine in a general hospital. POPULATION: Patients with stroke with first unilateral lesions were enrolled in the study. METHODS: Thirty-six patients were randomly assigned to the cerebellar iTBS group or sham stimulation group. The cerebellar iTBS or pseudo stimulation site is the ipsilateral cerebellum on the paralyzed side, which is completed just before daily physical therapy. The study was conducted five times a week for two consecutive weeks. All patients were assessed before the intervention (T0) and at the end of 2 weeks of treatment (T1), respectively. The primary outcome was the Berg Balance Scale (BBS), while secondary outcome measures included the Fugl Meyer Lower Limb Assessment Scale (FMA-LE), timed up and go (TUG), Barthel Index (BI), and gait analysis. RESULTS: After 2 weeks of intervention, the BBS, FMA-LE, TUG, and BI score in both the iTBS group and the sham group were significantly improved compared to the baseline (all P<0.05). Also, there was a significant gait parameter improvement including the cadence, stride length, velocity, step length compared to the baseline (P<0.05) in the iTBS group, but only significant improvement in cadence was identified in the sham group (P<0.05). Intergroup comparison showed that the BBS (P<0.001), FMA-LE (P<0.001), and BI (P=0.002) in the iTBS group were significantly higher than those in the sham group, and the TUG in the iTBS was significantly lower than that in the sham group (P=0.002). In addition, there were significant differences in cadence (P=0.029), strip length (P=0.046), gain velocity (P=0.002), and step length of affected lower limb (P=0.024) between the iTBS group and the sham iTBS group. CONCLUSIONS: Physical therapy is able to improve the functional recovery in hemiplegic patients after stroke, but the cerebellar iTBS can facilitate and accelerate the recovery, particularly the balance function and gait. Cerebellar iTBS could be an efficient and facilitative treatment for patients with stroke. CLINICAL REHABILITATION IMPACT: Cerebellar iTBS provides a convenient and efficient treatment modality for functional recovery of patients with stroke, especially balance function and gait.

2.
PLoS Negl Trop Dis ; 18(1): e0011874, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38166153

ABSTRACT

BACKGROUND: Proteases secreted by Trichinella spiralis intestinal infective larvae (IIL) play an important role in larval invasion and pathogenesis. However, the mechanism through which proteases mediate larval invasion of intestinal epithelial cells (IECs) remains unclear. A novel T. spiralis trypsin (TsTryp) was identified in IIL excretory/secretory (ES) proteins. It was an early and highly expressed protease at IIL stage, and had the potential as an early diagnostic antigen. The aim of this study was to investigate the biological characteristics of this novel TsTryp, its role in larval invasion of gut epithelium, and the mechanisms involved. METHODOLOGY/PRINCIPAL FINDING: TsTryp with C-terminal domain was cloned and expressed in Escherichia coli BL21 (DE3), and the rTsTryp had the enzymatic activity of natural trypsin, but it could not directly degrade gut tight junctions (TJs) proteins. qPCR and western blotting showed that TsTryp was highly expressed at the invasive IIL stage. Immunofluorescence assay (IFA), ELISA and Far Western blotting revealed that rTsTryp specifically bound to IECs, and confocal microscopy showed that the binding of rTsTryp with IECs was mainly localized in the cytomembrane. Co-immunoprecipitation (Co-IP) confirmed that rTsTryp bound to protease activated receptors 2 (PAR2) in Caco-2 cells. rTsTryp binding to PAR2 resulted in decreased expression levels of ZO-1 and occludin and increased paracellular permeability in Caco-2 monolayers by activating the extracellular regulated protein kinases 1/2 (ERK1/2) pathway. rTsTryp decreased TJs expression and increased epithelial permeability, which could be abrogated by the PAR2 antagonist AZ3451 and ERK1/2 inhibitor PD98059. rTsTryp facilitated larval invasion of IECs, and anti-rTsTryp antibodies inhibited invasion. Both inhibitors impeded larval invasion and alleviated intestinal inflammation in vitro and in vivo. CONCLUSIONS: TsTryp binding to PAR2 activated the ERK1/2 pathway, decreased the expression of gut TJs proteins, disrupted epithelial integrity and barrier function, and consequently mediated larval invasion of the gut mucosa. Therefore, rTsTryp could be regarded as a potential vaccine target for blocking T. spiralis invasion and infection.


Subject(s)
Receptor, PAR-2 , Trichinella spiralis , Trichinellosis , Animals , Humans , Mice , Caco-2 Cells , Epithelium/metabolism , Helminth Proteins/metabolism , Larva/physiology , MAP Kinase Signaling System , Mice, Inbred BALB C , Protein Kinases , Trichinella spiralis/metabolism , Trichinella spiralis/pathogenicity , Trichinellosis/genetics , Trichinellosis/metabolism , Trypsin/metabolism , Receptor, PAR-2/metabolism
3.
Parasit Vectors ; 17(1): 9, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178167

ABSTRACT

BACKGROUND: The excretory/secretory (ES) antigen of Trichinella spiralis muscle larvae (ML) is currently the most widely used diagnostic antigen to detect T. spiralis infection. However, this antigen has certain drawbacks, such as a complicated ES antigen preparation process and lower sensitivity during the early phase of infection. The aim of this study was to investigate the features of a novel T. spiralis trypsin (TsTryp) and evaluate its potential diagnostic value for trichinellosis. METHODS: The TsTryp gene was cloned and recombinant TsTryp (rTsTryp) expressed. Western blotting and an enzyme-linked immunosorbent assay (ELISA) were performed to confirm the antigenicity of rTsTryp. The expression pattern and distribution signature of TsTryp at various life-cycle stages of T. spiralis were analyzed by quantitative PCR, western blotting and the immunofluorescence test. An ELISA with rTsTryp and ML ES antigens was used to detect immunoglobulins G and M (IgG, IgM) in serum samples of infected mice, swine and humans. The seropositive results were further confirmed by western blot with rTsTryp and ML ES antigens. RESULTS: TsTryp expression was observed in diverse T. spiralis life-cycle phases, with particularly high expression in the early developmental phase (intestinal infectious larvae and adults), with distribution observed mainly at the nematode outer cuticle and stichosome. rTsTryp was identified by T. spiralis-infected mouse sera and anti-rTsTryp sera. Natural TsTryp protease was detected in somatic soluble and ES antigens of the nematode. In mice infected with 200 T. spiralis ML, serum-specific IgG was first detected by rTsTryp-ELISA at 8 days post-infection (dpi), reaching 100% positivity at 12 dpi, and first detected by ES-ELISA at 10 dpi, reaching 100% positivity at 14 dpi. Specific IgG was detected by rTsTryp 2 days earlier than by ES antigens. When specific IgG was determined in serum samples from trichinellosis patients, the sensitivity of rTsTryp-ELISA and ES antigens-ELISA was 98.1% (51/52 samples) and 94.2% (49/52 samples), respectively (P = 0.308), but the specificity of rTsTryp was significantly higher than that of ES antigens (98.7% vs. 95.4%; P = 0.030). Additionally, rTsTryp conferred a lower cross-reaction, with only three serum samples in total testing positive from 11 clonorchiasis, 20 cysticercosis and 24 echinococcosis patients (1 sample from each patient group). CONCLUSIONS: TsTryp was shown to be an early and highly expressed antigen at intestinal T. spiralis stages, indicating that rTsTryp represents a valuable diagnostic antigen for the serodiagnosis of early Trichinella infection.


Subject(s)
Trichinella spiralis , Trichinellosis , Adult , Humans , Swine , Mice , Animals , Trichinellosis/diagnosis , Trypsin , Antigens, Helminth , Helminth Proteins , Enzyme-Linked Immunosorbent Assay/methods , Larva/physiology , Life Cycle Stages , Serologic Tests , Immunoglobulin G , Antibodies, Helminth
4.
Acta Trop ; 249: 107076, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37977254

ABSTRACT

The research aimed to describe a new Trichinella spiralis dipeptidyl peptidase 1 (TsDPP1) and investigate its functions in the larval invasion of intestinal epithelial cells (IECs). The gene TsDPP1 was successfully replicated and produced in Escherichia coli BL21 (DE3), showing a strong immune response. TsDPP1 was detected in diverse stages of T. spiralis and showed significant expression in the intestine infective larvae (IIL) and adult worms at 6 days post infection, as confirmed by qPCR and Western blot analysis. The primary localization of TsDPP1 in this parasite was observed in cuticles, stichosomes, and embryos by using the indirect immunofluorescence assay (IIFA). rTsDPP1 exhibited the enzymatic function of natural dipeptidyl peptidase and showed specific binding to IECs, and the binding site was found to be localized on cell membrane. Following transfection with dsRNA-TsDPP1, the expression of TsDPP1 mRNA and protein in muscle larvae (ML) were decreased by approximately 63.52 % and 58.68 %, correspondingly. The activity of TsDPP1 in the ML and IIL treated with dsRNA-TsDPP1 was reduced by 42.98 % and 45.07 %, respectively. The acceleration of larval invasion of IECs was observed with rTsDPP1, while the invasion was suppressed by anti-rTsDPP1 serum. The ability of the larvae treated with dsRNA-TsDPP1 to invade IECs was hindered by 31.23 %. In mice infected with dsRNA-treated ML, the intestinal IIL, and adults experienced a significant decrease in worm burdens and a noticeable reduction in adult female length and fecundity compared to the PBS group. These findings indicated that TsDPP1 significantly impedes the invasion, growth, and reproductive capacity of T. spiralis in intestines, suggesting its potential as a target for anti-Trichinella vaccines.


Subject(s)
Cathepsin C , Helminth Proteins , Intestinal Mucosa , Trichinella spiralis , Trichinellosis , Animals , Female , Mice , Epithelial Cells/parasitology , Helminth Proteins/genetics , Helminth Proteins/metabolism , Larva/pathogenicity , Mice, Inbred BALB C , Trichinella spiralis/genetics , Trichinella spiralis/pathogenicity , Trichinellosis/parasitology , Cathepsin C/genetics , Cathepsin C/metabolism , Intestinal Mucosa/parasitology
5.
Vet Res ; 54(1): 86, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37784173

ABSTRACT

C-type lectin (CTL) is a protein that binds to saccharides and plays an important role in parasite adhesion, host cell invasion and immune evasion. Previous studies showed that recombinant T. spiralis C-type lectin (rTsCTL) promotes larval invasion of intestinal epithelium cells (IEC), whereas anti-rTsCTL antibodies inhibits larval invasion. Syndecan-1 (SDC-1) is a member of the heparan sulfate proteoglycan family which is mainly expressed on the surface of IEC and in extracellular matrices where they interact with a plethora of ligands. SDC-1 has a principal role in maintaining cell morphogenesis, establishing cell-cell adhesions, and regulating the gut mucosal barrier. The aim of this study was to investigate whether rTsCTL binds to SDC-1 on IEC, and the binding of rTsCTL with SDC-1 promotes larval invasion and its mechanism. IFA results show that rTsCTL and SDC-1 co-localized on Caco-2 cell membrane. GST pull-down and Co-IP verified the direct interaction between rTsCTL and SDC-1 on Caco-2 cells. qPCR and Western blotting revealed that rTsCTL binding to SDC-1 increased the expression of SDC-1 and claudin-2, and reduced the expression of occludin and claudin-1 in Caco-2 cells incubated with rTsCTL via the STAT3 pathway. ß-Xyloside (a syndecan-1 synthesis inhibitor) and Stattic (a STAT3 inhibitor) significantly inhibited rTsCTL binding to syndecan-1 in Caco-2 cells and activation of the STAT3 pathway, abrogated the effects of rTsCTL on the expression of gut tight junctions, and impeded larval invasion. The results demonstrate that binding of rTsCTL to SDC-1 on Caco-2 cells activated the STAT3 pathway, decreased gut tight junction expression, damaged the integrity of the gut epithelial barrier, and mediated T. spiralis invasion of the gut mucosa. TsCTL might be regarded as a candidate vaccine target against T. spiralis invasion and infection.


Subject(s)
Trichinella spiralis , Trichinellosis , Animals , Mice , Humans , Trichinella spiralis/physiology , Trichinellosis/parasitology , Trichinellosis/veterinary , Larva/physiology , Caco-2 Cells , Syndecan-1/genetics , Syndecan-1/metabolism , Intestinal Mucosa/metabolism , Epithelial Cells/metabolism , Mice, Inbred BALB C
6.
Front Psychiatry ; 14: 942069, 2023.
Article in English | MEDLINE | ID: mdl-37304438

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder and has a predilection for children. Its symptoms, such as lifelong social communication deficits and repetitive sensory-motor behaviors, put a huge burden on the patient's family and society. Currently, there is no cure for ASD, and some medications that can improve its symptoms are often accompanied by adverse effects. Among many complementary and alternative medicine (CAM) therapies, acupuncture has shown promising application potential, but after years of practice, it has not been recognized as the preferred CAM therapy for ASD. Therefore, we analyzed and discussed the clinical study reports of acupuncture in the treatment of ASD in the past 15 years from the aspects of study subjects, group setting, intervention modalities, acupoint selection, outcome evaluation, and safety. The data accumulated at present are not sufficient to support the clinical effectiveness of acupuncture in ASD and to justify its use in clinical practice. They provide, however, initial evidence of possible effectiveness and encourage further investigation in order to reach firm conclusions. Based on a comprehensive analysis, we believed that following the Standards for Reporting Interventions in Clinical Trials of Acupuncture (STRICTA) and Consolidated Standards of Reporting Trials (CONSORT), screening the optimal combination of acupoints applying a rigorous scientific study design, and performing the related functional experiments may be the effective way to convincingly test the hypothesis that acupuncture may be beneficial in ASD patients. The significance of this review is to provide a reference for researchers to carry out high-quality clinical trials of acupuncture in the treatment of ASD from the perspective of the combination of modern medicine and traditional Chinese medicine.

7.
Acta Trop ; 241: 106897, 2023 May.
Article in English | MEDLINE | ID: mdl-36931335

ABSTRACT

Trichinellosis is a major zoonotic parasitosis which is a vital risk to meat food safety. It is requisite to exploit new strategy to interdict food animal Trichinella infection and to obliterate Trichinella from food animals to ensure meat safety. Mannose is an oligosaccharide that specifically binds to the carbohydrate-recognition domain of C-type lectin; it has many physiological functions including reliving inflammation and regulating immune reaction. The purpose of this study was to investigate the suppressive role of mannose on T. spiralis larval invasion and infection, its effect on intestinal and muscle inflammation, and immune responses after challenge. The results showed that compared to the saline-treated infected mice, the mannose-treated infected mice had less intestinal adult and muscle worm burdens, mild inflammation of intestine and muscle of infected mice. The levels of specific anti-Trichinella IgG (IgG1/IgG2a), IgA and sIgA in mannose-treated infected mice were obviously inferior to saline-treated infected mice (P < 0.01). Furthermore, the levels of two cytokines (IFN-γ and IL-4) in mannose-treated infected mice were also significantly lower than the saline-treated infected mice (P < 0.01). The protective effect of the mannose against Trichinella infection might be not related to specific antibody and cellular immune responses. The above results demonstrated that mannose could be considered as a novel adjuvant therapeutic agent for anti-Trichinella drugs to block larval invasion at early stage of Trichinella infection.


Subject(s)
Trichinella spiralis , Trichinellosis , Mice , Animals , Mannose/pharmacology , Trichinellosis/drug therapy , Muscles , Immunoglobulin G , Inflammation/drug therapy , Intestines , Mice, Inbred BALB C
8.
Front Aging Neurosci ; 15: 1096417, 2023.
Article in English | MEDLINE | ID: mdl-36819715

ABSTRACT

Background: At present, the effect of Tai Chi (TC) on lower limb function in patients with Parkinson's disease (PD) is controversial. Therefore, we conducted a meta-analysis on the influence of TC on lower limb function in PD patients. Methods: According to the PRISMA guidelines, seven databases were searched. Randomized controlled trials (RCTS) were selected and screened according to inclusion and exclusion criteria. We assessed the quality of the studies using the Cochrane Risk of Bias tool and then extracted the characteristics of the included studies. The random effect model was adopted, and heterogeneity was measured by I 2 statistic. Results: A total of 441 articles were screened, and 10 high-quality RCTs were with a total of 532 patients with PD met Our inclusion criteria. Meta-analysis showed that compared To control groups TC improved several outcomes. TC significantly improved motor function (SMD = -0.70; 95% CI = -0.95, -0.45; p < 0.001; I 2 = 35%), although The results were not statistically significant for The subgroup analysis of TC duration (SMD = -0.70; 95% CI = -0.95, -0.45; p = 0.88; I 2 = 0%;). TC significantly improved balance function (SMD = 0.89; 95% CI = 0.51, 1.27; p < 0.001; I 2 = 54%), functional walking capacity (SMD = -1.24; 95% CI = -2.40, -0.09; p = 0.04; I 2 = 95%), and gait velocity (SMD = 0.48; 95% CI = -0.02, 0.94; p = 0.04; I 2 = 78%), But Did Not improve endurance (SMD = 0.31; 95% CI = -0.12, 0.75; p = 0.16; I 2 = 0%), step length (SMD = 0.01; 95% CI = -0.34, 0.37; p = 0.94; I 2 = 29%), and cadence (SMD = 0.06; 95% CI = -0.25, 0.36; p = 0.70; I 2 = 0%). Conclusion: TC has beneficial effects on motor function, balance function, functional walking ability, and gait velocity, but does not improve walking endurance, stride length, and cadence.

9.
Front Immunol ; 13: 894170, 2022.
Article in English | MEDLINE | ID: mdl-35924246

ABSTRACT

The metabolic characteristics of COVID-19 disease are still largely unknown. Here, 44 patients with COVID-19 (31 mild COVID-19 patients and 13 severe COVID-19 patients), 42 healthy controls (HC), and 42 patients with community-acquired pneumonia (CAP), were involved in the study to assess their serum metabolomic profiles. We used widely targeted metabolomics based on an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The differentially expressed metabolites in the plasma of mild and severe COVID-19 patients, CAP patients, and HC subjects were screened, and the main metabolic pathways involved were analyzed. Multiple mature machine learning algorithms confirmed that the metabolites performed excellently in discriminating COVID-19 groups from CAP and HC subjects, with an area under the curve (AUC) of 1. The specific dysregulation of AMP, dGMP, sn-glycero-3-phosphocholine, and carnitine was observed in the severe COVID-19 group. Moreover, random forest analysis suggested that these metabolites could discriminate between severe COVID-19 patients and mild COVID-19 patients, with an AUC of 0.921. This study may broaden our understanding of pathophysiological mechanisms of COVID-19 and may offer an experimental basis for developing novel treatment strategies against it.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Humans , Metabolomics/methods , Tandem Mass Spectrometry/methods
10.
Front Oncol ; 12: 889516, 2022.
Article in English | MEDLINE | ID: mdl-35847896

ABSTRACT

Background: Induction chemotherapy (IC) can alleviate locoregionally advanced nasopharyngeal carcinoma (LA-NPC), but effectiveness differs between patients, toxicity is problematic, and effective blood-based IC efficacy predictors are lacking. Here, we aimed to identify biomarkers for early identification of IC beneficiaries. Methods: Sixty-four pairs of matched plasma samples collected before and after IC from LA-NPC patients including 34 responders and 30 non-responders, as well as 50 plasma samples of healthy individuals, were tested using data-independent acquisition mass spectrometry. The proteins associated with clinical traits or IC benefits were investigated by weighted gene co-expression network analysis (WGCNA) and soft cluster analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional annotations were performed to determine the potential function of the identified proteins. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of candidate biomarkers in predicting IC beneficiaries. Results: Compared with healthy individuals, 1027 differentially expressed proteins (DEPs) were found in the plasma of LA-NPC patients. Based on feedback from IC outcomes, 463 DEPs were identified in the pre-IC plasma between responders and non-responders. A total of 1212 DEPs represented the proteomic changes before and after IC in responders, while 276 DEPs were identified in post-IC plasma between responders and non-responders. WGCNA identified nine protein co-expression modules correlated with clinical traits. Soft cluster analysis identified four IC benefits-related protein clusters. Functional enrichment analysis showed that these proteins may play a role in IC via immunity, complement, coagulation, glycosaminoglycan and serine. Four proteins differentially expressed in all group comparisons, paraoxonase/arylesterase 1 (PON1), insulin-like growth factor-binding protein 3 (IGFBP-3), rheumatoid factor D5 light chain (v-kappa-3) and RNA helicase (DDX55), were associated with clinical traits or IC benefits. A four-protein model accurately identified potential IC beneficiaries (AUC=0.95) while diagnosing LA-NPC (AUC=0.92), and the prediction performance was verified using the models to confirm the effective IC (AUC=0.97) and evaluate IC outcome (AUC=0.94). Conclusion: The plasma protein profiles among IC responders and non-responders were different. PON1, IGFBP3, v-kappa-3 and DDX55 could serve as potential biomarkers for early identification of IC beneficiaries for individualised treatment of LA-NPC.

11.
Acta Pharmacol Sin ; 43(11): 2905-2916, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35459869

ABSTRACT

Anterior gradient 2 (AGR2), a protein disulfide isomerase (PDI), is a multifunctional protein under physiological and pathological conditions. In this study we investigated the roles of AGR2 in regulating cholesterol biogenesis, lipid-lowering efficiency of lovastatin as well as in protection against hypercholesterolemia/statin-induced liver injury. We showed that AGR2 knockout significantly decreased hepatic and serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in mice with whole-body or hepatocyte-specific Agr2-null mutant, compared with the levels in their wild-type littermates fed a normal chow diet (NCD) or high-fat diet (HFD). In contrast, mice with AGR2 overexpression (Agr2/Tg) exhibited an increased cholesterol level. Mechanistic studies revealed that AGR2 affected cholesterol biogenesis via activation of AKT/sterol regulatory element-binding protein-2 (SREBP2), to some extent, in a PDI motif-dependent manner. Moreover, elevated AGR2 led to a significant decrease in the lipid-lowering efficacy of lovastatin (10 mg· kg-1· d-1, ip, for 2 weeks) in mice with hypercholesterolemia (hyperCho), which was validated by results obtained from clinical samples in statin-treated patients. We showed that lovastatin had limited effect on AGR2 expression, but AGR2 was inducible in Agr2/Tg mice fed a HFD. Further investigations demonstrated that drug-induced liver toxicity and inflammatory reactions were alleviated in hypercholesterolemic Agr2/Tg mice, suggesting the dual functions of AGR2 in lipid management and hyperCho/statin-induced liver injury. Importantly, the AGR2-reduced lipid-lowering efficacy of lovastatin was attenuated, at least partially, by co-administration of a sulfhydryl-reactive compound allicin (20 mg· kg-1· d-1, ip, for 2 weeks). These results demonstrate a novel role of AGR2 in cholesterol metabolism, drug resistance and liver protection, suggesting AGR2 as a potential predictor for selection of lipid-lowering drugs in clinic.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hypercholesterolemia , Mice , Animals , Lovastatin/pharmacology , Lovastatin/therapeutic use , Lovastatin/metabolism , Hypercholesterolemia/drug therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Cholesterol, LDL , Liver/metabolism
13.
Vet Res ; 53(1): 19, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35255974

ABSTRACT

The intestinal epithelium is the first natural barrier against Trichinella spiralis larval invasion, but the mechanism of larval invasion of the gut epithelium is not fully elucidated. The aim of this study was to investigate whether the excretory/secretory proteins (ESPs) of T. spiralis intestinal infective larvae (IIL) degrade tight junction (TJ) proteins, to assess the main ESP proteases hydrolysing TJ proteins using various enzyme inhibitors and to define the key invasive factors in IIL invasion of the gut epithelium. The results of immunofluorescence, Western blot and Transwell assays showed that serine proteases and cysteine proteases in the ESPs played main roles in hydrolysing occludin, claudin-1 and E-cad and upregulating claudin-2 expression. Challenge infection results showed that IIL expulsion from the gut at 12 hpi was significantly higher in mice which were infected with muscle larvae (ML) treated with a single inhibitor (PMSF, E-64, 1,10-Phe or pepstatin) or various mixtures containing PMSF and E-64 than in mice in the PBS group or the groups treated with an inhibitor mixture not containing PMSF and E-64 (P < 0.0001). At 6 days post-infection, mice which were infected with ML treated with PMSF, E-64, 1,10-Phe or pepstatin exhibited 56.30, 64.91, 26.42 and 31.85% reductions in intestinal adult worms compared to mice in the PBS group (P < 0.0001). The results indicate that serine proteases and cysteine proteases play key roles in T. spiralis IIL invasion, growth and survival in the host and that they may be main candidate target molecules for vaccines against larval invasion and development.


Subject(s)
Rodent Diseases , Trichinella spiralis , Trichinellosis , Animals , Epithelial Cells/metabolism , Helminth Proteins/metabolism , Larva , Mice , Mice, Inbred BALB C , Serine Proteases , Trichinella spiralis/physiology , Trichinellosis/veterinary
14.
Infect Genet Evol ; 99: 105240, 2022 04.
Article in English | MEDLINE | ID: mdl-35150890

ABSTRACT

BACKGROUND: Pulmonary tuberculosis (TB) is a serious disease burden worldwide, and its effective early diagnosis is still facing challenges. Knowledge, acquired from multi-omics integration analysis about the association between different types of differentially expressed molecules in the plasma of TB patients and the disease traits, is anticipated to improve the accuracy of TB diagnosis through the "integrative pattern". METHODS: In this study, the lncRNA-miRNA-mRNA interaction network was constructed based on the competing endogenous RNA (ceRNA) hypothesis by integrating our previous data sets of lncRNA, mRNA, miRNA, and metabolites. Moreover, the key regulatory axis was established by co-expression analysis and verified at the level of metabolites. RESULTS: A ceRNA regulatory network consisting of 23 lncRNAs, 10 miRNAs, and 113 mRNAs was constructed. The analysis results suggested that lncRNA (OSBPL10-AS1), miRNA (has-miR-485-5p), and mRNA (SLC23A2) might be involved in the regulation of vitamin metabolism in patients with TB. Metabolite analysis showed that compared with the normal control group, TB patients had abnormal vitamin metabolism, and the expression levels of pyridoxal phosphate, pyridoxamine phosphate, and folic acid were significantly different between the two groups (p < 0.05). CONCLUSION: Integrated multi-omics analysis showed that vitamin metabolism disorder may be one of the pathological characteristic of TB. OSBPL10-AS1, hsa-miR-485-5p, SLC23A2, pyridoxal phosphate, pyridoxamine phosphate, and folic acid may collectively constitute the "integrative pattern" of multiple biomarkers, which may provide an accurate diagnosis of TB.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Tuberculosis, Pulmonary , Biomarkers , Folic Acid , Gene Regulatory Networks , Humans , MicroRNAs/genetics , Pyridoxal Phosphate/genetics , Pyridoxamine/analogs & derivatives , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/genetics , Vitamins
15.
Anat Rec (Hoboken) ; 305(5): 1087-1099, 2022 05.
Article in English | MEDLINE | ID: mdl-34347376

ABSTRACT

Lung cancer is characterized by a high incidence rate and low survival rate. It is important to achieve early diagnosis of the disease. We applied ultra-high performance liquid chromatography tandem mass spectrometry to screen plasma lipid spectrum in non-small cell lung cancer (NSCLC) patients, healthy controls (HC), and community-acquired pneumonia (CAP) patients. Modeling employing orthogonal partial least squares-discriminant analysis combined with t-test was used to screen the differential lipids. Logistic regression analysis was used to establish the diagnostic model, while the accuracy was verified by 10-fold cross-validation. The results showed that the abnormal metabolism of lipid in NSCLC mainly comprised fatty acid metabolism, phospholipid metabolism, and glyceride metabolism. Four potential biomarkers, including LPC (14:0/0:0), LPI (14:1/0:0), DG (14:0/18:2/0:0), and LPC (16:1/0:0), were fitted by the receiver operating characteristic curve model with the area under curve (AUC) value of 0.856, and the specificity and sensitivity were 87.0 and 78.0%, respectively. The results of cross validation showed that the AUC value of the model was 0.812, the sensitivity was 72.9%, and the specificity was 82.6%. The positive rate of four potential lipid biomarkers in this study (>60.0%) was higher than that of existing tumor biomarkers in the clinical application. We investigated the plasma lipid profile of NSCLC patients and identified lipid biomarkers with potential diagnostic values. From the lipidomics perspective, our study may lay a foundation for the biomarker-based early diagnosis of lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Biomarkers , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Chromatography, High Pressure Liquid/methods , Early Detection of Cancer , Humans , Lipids , Lung Neoplasms/diagnosis , Tandem Mass Spectrometry
16.
Anat Rec (Hoboken) ; 304(11): 2381-2396, 2021 11.
Article in English | MEDLINE | ID: mdl-34626452

ABSTRACT

Salivary gland dysfunction (SGD) induced by chemo- and radiotherapy for head and neck cancer (HNC) has always been a difficult problem in modern medicine. The quality of life of a large number of HNC patients is severely impaired by SGD such as xerostomia and dysphagia. In recent years, several studies have found that acupuncture can improve patients' salivary secretion, but it has not yet been approved as an alternative therapy for SGD. For this reason, we collected the clinical study reports on acupuncture in the treatment of SGD induced by chemo- and radiotherapy in HNC patients in the past 20 years, and analyzed and discussed the advantages and disadvantages of these studies with respect to tumor types, group setting, intervention modality, acupoints selection, outcome evaluation, and safety. We believed that acupuncture is beneficial for SGD, but the existing objective evidence is insufficient to support its effectiveness. Therefore, improving the Standards for Reporting Interventions in Clinical Trials of Acupuncture, selecting the optimal combination of acupoints through scientific and rigorous study design, and exploring the potential mechanism of acupuncture in the treatment of diseases combined with the meridian theory may be effective ways to promote the acceptance of acupuncture as an alternative therapy for SGD in future. The significance of this review is to provide a reference for researchers to carry out high-quality clinical trials of acupuncture in the treatment of SGD in future from the perspective of the combination of modern medicine and traditional Chinese medicine.


Subject(s)
Acupuncture Therapy , Head and Neck Neoplasms , Salivary Gland Diseases , Clinical Trials as Topic , Drug-Related Side Effects and Adverse Reactions/prevention & control , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/radiotherapy , Humans , Radiotherapy/adverse effects , Salivary Gland Diseases/etiology , Salivary Gland Diseases/prevention & control , Salivary Glands/drug effects , Salivary Glands/physiopathology , Salivary Glands/radiation effects
17.
J Oncol ; 2021: 5574150, 2021.
Article in English | MEDLINE | ID: mdl-34257652

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly malignant disease, and it is characterized by rapid progression and low five-year survival rate. At present, there are no effective methods for monitoring the treatment and prognosis of HCC. METHODS: The transcriptome and gene expression profiles of HCC were obtained from the Cancer Genome Atlas (TCGA) program, International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases. The random forest method was applied to construct a four-gene prognostic model based on RNA terminal phosphate cyclase like 1 (RCL1) expression. The Kaplan-Meier method was performed to evaluate the prognostic value of RCL1, long noncoding RNAs (AC079061, AL354872, and LINC01093), and four-gene signature (SPP1, MYBL2, TRNP1, and FTCD). We examined the relationship between RCL1 expression and immune cells infiltration, tumor mutation burden (TMB), and microsatellite instability (MSI). RESULTS: The results of multiple databases indicated that the aberrant expression of RCL1 was associated with clinical outcome, immune cells infiltration, TMB, and MSI in HCC patients. Meanwhile, we found that long noncoding RNAs (AC079061, AL354872, and LINC01093) and RCL1 were significantly coexpressed in HCC patients. We also confirmed that the four-gene signature was an independent prognostic factor for HCC patients. Ferroptosis potential index, immune checkpoint molecules, and clinical feature were found to have obvious correlations with risk score. The area under the receiver operating characteristic curve values for the model were 0.7-0.8 in the training set and the validation set, suggesting high robustness of the four-gene signature. We then built a nomogram for facilitating the use in clinical practice. CONCLUSION: Our study demonstrated that RCL1 and a novel four-gene signature can be used as prognostic biomarkers for predicting clinical outcome in HCC patients; and this model may assist in individualized treatment monitoring of HCC patients in clinical practice.

SELECTION OF CITATIONS
SEARCH DETAIL
...